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1. Introduction

The class of Noncommutative Quantum Field Theories (NCQFT’s) obtained by a Moyal

deformation of the usual (pointwise) product of functions, has been extensively studied in

recent years [1, 2]. One of the main reasons for the renewed interest in this subject may

be found in its relevance to the dynamics of open string theories in non-vanishing constant

antisymmetric NS backgrounds, a set up that leads to noncommutativity between the string

endpoint coordinates [3].

From a quite different standpoint, this topic has also attracted attention because NC-

QFT’s seem to be very good candidates for an effective description of the Quantum Hall

Effect (QHE) [4]. Indeed, the existence of a strong magnetic field normal to an (essentially)

two-dimensional sample, paves the way to the use of the Peierls substitution, whereby the

two spatial coordinates corresponding to each charged particle become noncommuting op-

erators [5].

In these NCQFT’s one usually considers quantum fields endowed with a non-

commutative (Moyal) ⋆ product which, for two functions f(x) and g(x) (x ∈ R
(d)), may be

defined as follows:
(

f ⋆ g
)

(x) ≡
[

e
i
2
θµν∂x

µ∂
y
ν f(x) g(y)

]

y→x
. (1.1)

Here, θµν is a constant antisymmetric tensor, and µ, ν run over the spacetime indices.

Since we shall be concerned with the case of 2 + 1-dimensional, i.e., ‘planar’ theories, the θµν
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tensor does necessarily have a zero mode. We shall assume that this zero mode corresponds

to the time-like (µ = 0) direction, having in mind instances where the noncommutativity

is, indeed, due to a physical magnetic field, as in the QHE. The θµν tensor will thus verify

θ0µ = 0 and the time-like coordinate x0 behaves, to all effects, as a commuting object.1

In this paper, we shall be concerned with the calculation of thermal effects in the

NCQFT of a real scalar field. Many interesting results have recently been obtained by

considering noncommutative systems obtained by a Moyal deformation of a standard QFT,

at a finite temperature [6 – 9]. However, we want to consider here the case of a model

equipped with a Grosse-Wulkenhaar (GW) term [10, 11] (see also [12]). The reason for

considering this kind of theory, rather than standard ones is, in our context, twofold.

Firstly, from a fundamental QFT point of view (not necessarily at a finite temperature),

we should do that in order to solve the non-decoupling of UV and IR fluctuations that

unavoidably manifests in the absence of such a term (a phenomenon usually known as

‘IR-UV mixing’ [13]). As a by product, one finds that a NCQFT without a GW-term is,

moreover, ‘anomalous’ under the Langmann-Szabo duality [14].

Secondly, and this is particularly relevant for the case at hand, one may also want to

include the GW-term because it effectively confines the system to a finite volume, which is

controlled by the strength of that term. This situation is, indeed, of physical interest when

one wants to consider NCQFT at a finite temperature, in particular for the calculation of

the free energy. There, one has to assume that the theory has been defined on a finite vol-

ume, and that volume tends to infinity at the end, when one takes the thermodynamic limit.

This is not an issue in the commutative case, where one can simply use a box and impose

periodic boundary conditions for the fields. The situation is not so simple in the noncom-

mutative case, however, since one should have to face the problem of imposing boundary

conditions for the NCQFT defined in a finite volume, with the related technical difficulties.

The GW-term introduces, for the case at hand, a kind of external harmonic potential.

It should be reminded that noncommutative theories including a coupling to an external

(usually magnetic) field do have interesting properties, even in the context of noncommu-

tative quantum mechanics [15, 16]. Indeed, for a (noncommutative) charged particle an

interesting distinction between two different phases naturally emerges, depending on the

ratio between the external magnetic field strength B and the noncommutativity parameter

θ. Those phases, corresponding to Hamiltonians having essentially different spectra, are

separated by a critical point determined by a relation θB = κ, where κ is a numerical

constant of order 1, whose precise value depends on the units and conventions adopted.

At that critical point the system becomes exactly solvable [17] (even in the presence of an

external potential [16]) and there is, moreover, an effective ‘dimensional reduction’ [15].

For the real scalar field we shall deal with in this work, there is also an interesting

interplay between the strength of the GW-term Ω2 and the noncommutativity parameter

θ, although the symmetry properties are quite different to the ones in the charged field case.

In this paper we study the perturbative calculation of the free energy for that model,

1This is particularly relevant to thermal field theory since the temperature is a commuting object so

must therefore be the imaginary time τ .
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focussing on the general properties of the first few terms, providing explicit results whenever

possible. We do that mostly for the self-dual case (Ω = 1), and discuss the relation between

them with the Ω 6= 1 case. The article is organized as follows: in section 2, we present the

perturbative calculation of the free energy for a real scalar field in 2 + 1 dimensions with

a Grosse-Wulkenhaar term. In section 3, we present our conclusions.

2. Perturbative calculation of the free energy

2.1 General considerations

Let us briefly review here the usual approach to the calculation of the free energy, in the

path-integral (imaginary-time) context [18], to apply it afterwards to the real scalar field

case.

We shall start from the partition function Z, depending on β ≡ T−1 and, eventually

(i.e., when there is a non-trivial internal conserved charge) on a chemical potential. The

functional integral representation of Z has the form

Z =

∫

Dµ e−S , (2.1)

where Dµ denotes the functional integration measure corresponding to the space of fields

being considered, which requires periodic or antiperiodic conditions for the imaginary-time

coordinate x0 ≡ τ , according to the fields being bosonic or fermionic, respectively.

In (2.1), S denotes the Euclidean action for a finite imaginary-time interval, namely,

τ ∈ [0, β]. The actions that we shall consider may be naturally decomposed as follows:

S = S0 + SI , (2.2)

where S0 denotes the free, i.e., quadratic, part of the action, and SI the interaction piece

(at least cubic in the fields). Note that the GW-term shall be thus included in S0.

Based on the above decomposition for the action, one arrives to the expression

Z = Z0

〈

e−SI
〉

(2.3)

where

Z0 =

∫

Dµ e−S0 , (2.4)

and we have introduced the notation:

〈. . .〉 ≡ 1

Z0

∫

Dµ . . . e−S0 , (2.5)

for Gaussian averages defined by the free action.

When constructing an expansion in powers of SI , it turns out to be simpler to consider

the free energy F ≡ − 1
β

lnZ. Indeed, one easily finds that

F = F0 + FI (2.6)
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where

F0 = − 1

β
lnZ0 (2.7)

and

FI ≡ − 1

β
ln

〈

e−SI
〉

. (2.8)

Expanding FI in powers of SI , one obtains

FI = F (1)
I + F (2)

I + F (3)
I + . . . (2.9)

where

F (1)
I =

1

β
〈SI〉 , (2.10)

F (2)
I = − 1

2!β

〈

(

SI − 〈SI〉
)2

〉

, (2.11)

F (3)
I =

1

3!β

〈

(

SI − 〈SI〉
)3

〉

, . . . (2.12)

In the remaining parts of this section, we first define the model that we shall study in

detail, and afterwards we calculate the first few terms in the above-defined expansion.

2.2 The model

The model is defined by an Euclidean action S = S0 + SI , with

S0 =
1

2

∫ β

0
dτ

∫

d2x
[

∂µφ ⋆ ∂µφ + Ω2 (x̃iφ) ⋆ (x̃iφ) + m2φ ⋆ φ
]

(2.13)

where x̃i ≡ 2(θ−1)ij xj , and

SI =
λ

4!

∫ β

0
dτ

∫

d2xφ ⋆ φ ⋆ φ ⋆ φ . (2.14)

We shall assume that θ > 0 and Ω ≥ 0 (without any lose of generality).

The harmonic potential proportional to Ω2 in (2.13) is the GW term. It has been

shown that its confining properties provide an infrared cutoff and, by the same token,

tame the IR problem due to IR/UV mixing [11].

By using elementary properties of the Moyal product, the free action S0 may also be

written in the equivalent way

S0 =
1

2

∫ β

0
dτ

∫

d2x

[

∂τφ ⋆ ∂τφ +

(

1 + Ω2

2

)

φ ⋆ x̃j ⋆ x̃j ⋆ φ

−
(

1 − Ω2

2

)

(

x̃j ⋆ φ ⋆ x̃j ⋆ φ
)

+ m2φ ⋆ φ

]

. (2.15)
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2.3 Zeroth order (‘ideal gas’)

The zeroth-order term Z0 is obtained from the evaluation of a Gaussian functional integral,

Z0 =

∫

Dφ e−S0[φ] . (2.16)

Following the usual procedure of QFT at finite temperature, we decompose the field φ,

periodic in the time coordinate, in terms of its Fourier components

φ(x) = φ(τ,x) = β− 1
2

+∞
∑

n=−∞
eiωnτ φn(x) , (2.17)

with ωn = 2πn
β

. Since we are considering a real field, φ† = φ, one has

φ†
0(x) = φ0(x) , φ†

n(x) = φ−n(x) , ∀n ≥ 1 . (2.18)

In terms of these modes, the free action becomes a decoupled sum of (d = 2) actions,

involving a real field φ0 and an infinite number of complex fields φn

S0[φ] = S
(0)
0 [φ0] +

∞
∑

n=1

S
(n)
0

[

φ†
n, φn

]

, (2.19)

where

S
(0)
0 [φ0] =

1

2

∫

d2x
[

∂jφ0 ⋆ ∂jφ0 + Ω2(x̃jφ0) ⋆ (x̃jφ0) + m2φ0 ⋆ φ0

]

(2.20)

and

S
(n)
0 [φ†

n, φn] =

∫

d2x
[

∂jφ
†
n ⋆ ∂jφn + Ω2(x̃jφ

†
n) ⋆ (x̃jφn)

+(m2 + ω2
n)φ†

n ⋆ φn

]

, n ≥ 1 . (2.21)

For each one of these two-dimensional theories we use the matrix base [19] to expand the

fields as

φn(x) =
∞

∑

i,j=0

φ(i,j)
n b(i,j)(x)

φ†
n(x) =

∞
∑

i,j=0

φ̄(i,j)
n b(j,i)(x) . (2.22)

The integration measure Dφ in (2.16) is defined in terms of the Fourier components (2.17) as

Dφ = Dφ0

∞
∏

n=1

Dφ†
n Dφn . (2.23)

The explicit form for them is

Dφ0 =

(

∏

i

Dφ
(i,i)
0

)

∏

i<j

Dφ̄
(i,j)
0 Dφ

(i,j)
0 , (2.24)
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and

Dφ†
nDφn =

∏

ij

Dφ̄(i,j)
n Dφ(i,j)

n . (2.25)

In terms of the matrix base decomposition (2.22), the actions (2.20)–(2.21) take the form

S
(0)
0 [φ0] = (2πθ)

1

2

∑

i1,i2;j1,j2

φ
(i1,i2)
0 G(i2,i1;j1,j2)

0 φ
(j1,j2)
0

= (2πθ)
1

2

∑

i;j

φ
(i,i)
0 G(i,i;j,j)

0 φ
(j,j)
0 +(2πθ)

∑

i1<i2;j1<j2

φ̄
(i1,i2)
0 G(i1,i2;j1,j2)

0 φ
(j1,j2)
0 (2.26)

and

S
(n)
0 [φ†

n, φn] = 2πθ
∑

i1,i2;j1,j2

φ̄(i1,i2)
n G(i1,i2;j1,j2)

n φ(j1,j2)
n , ∀n ≥ 1 , (2.27)

where2

G(i1,i2;j1,j2)
n =

[

m2 + ω2
n + µ2(i1 + i2 + 1)

]

δi1j1δi2j2

−µ2√ω
√

(i1 + 1)(i2 + 1) δi1+1,j1δi2+1,j2

−µ2√ω
√

i1i2 δi1−1,j1δi2−1,j2 , (2.28)

with

µ2 = 2
(1 + Ω2)

θ
,

√
ω =

1 − Ω2

1 + Ω2
. (2.29)

The integrals over the different Fourier modes decouple,

Z0 =

∞
∏

n=0

Z(n)
0 , (2.30)

where

Z(0)
0 =

∫

Dφ0 e−S
(0)
0 [φ0] (2.31)

and

Z(n)
0 =

∫

Dφ†
n Dφn e−S

(n)
0 [φ†

n,φn] . (2.32)

A careful use of the matrix base decomposition shows that the following expressions hold

true3

lnZ(0)
0 = −1

2
Tr lnG0 (2.33)

and

lnZ(n)
0 = −Tr lnGn . (2.34)

2Note that our convention for the kernel differs with the one used in [10, 11] in a transposition of the

first pair of indices.
3Although we are taking the logarithm of a dimensional quantity in (2.35), a precise meaning can be

given to the formula using the analytic regularization technique [20].
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In this last expressions the trace operation Tr should be understood as taken over the

whole set of matrix base elements {b(i,j)}. Thus,

lnZ0 = −1

2
Tr lnG0 −

∞
∑

n=1

Tr lnGn

= −1

2

∞
∑

n=−∞
Tr lnGn . (2.35)

The sum over n can of course be calculated (see for example [20]), so that we may write

the corresponding contribution to the free energy as follows:

F0 =
1

2
Tr

√
H + β−1 Tr ln

(

1 − e−β
√

H
)

(2.36)

where an operator H is introduced, such that its matrix elements in the matrix basis

{b(i,j)} are

H(i1,i2;j1,j2) ≡
∫

d2x [b(i1,i2)(x)]†H(x) b(j1,j2)(x)

=
(

m2 + µ2(i1 + i2 + 1)
)

δi1j1δi2j2

−µ2√ω
√

(i1 + 1)(i2 + 1)δi1+1,j1δi2+1,j2

−µ2√ω
√

i1i2 δi1−1,j1δi2−1,j2 . (2.37)

In what follows, the first (β-independent) term in (2.36), which corresponds to the vacuum

energy part, shall be neglected since it does not contribute to the thermodynamical

properties of the system.

We proceed in the next paragraphs to evaluate F0 for different values of the constant

Ω2. We first consider the simplest Ω2 = 1 case, and then extend the result to the general

Ω2 6= 1 situation by mapping the latter to the former.

2.3.1 The self-dual Ω2 = 1 case

The Ω2 = 1 case becomes simple since ω given by (2.29) becomes zero and therefore the

H kernel is diagonal. Explicitly,

H(i1,i2;j1,j2) =

(

m2 +
4

θ
(i1 + i2 + 1)

)

δi1j1 δi2j2 . (2.38)

It’s eigenvalues hl are

hl =

(

m2 +
4

θ
(l + 1)

)

, l = 0, 1, 2, . . . (2.39)

with a degeneracy equal to l + 1 (the number of different ways to obtain an integer l by

adding two non-negative integers i1 and i2). The degeneracy in the energy for the free

theory can be seen to have its origin in the existence of a dynamical SU(2) symmetry for

the two dimensional isotropic oscillator (more on this below, see section 2.5). The free

energy of the self-dual model is then

[

F0

]

Ω2=1
= β−1

∞
∑

l=1

l ln

(

1 − e
−β

q

m2+ 4
θ
l

)

. (2.40)
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2.3.2 The general case

The general case corresponding to an arbitrary value of Ω2 can also be dealt with exactly.

We first note that the matrix elements of H may be regarded as the ones corresponding

to an Hermitian operator constructed out of two independent sets of harmonic oscillator

annihilation and creation operators aα, a†α (α = 1, 2), as follows:

H = m2 + µ2
(

a†1a1 + a†2a2 + 1
)

− µ2 √ω
(

a1a2 + a†1a
†
2

)

. (2.41)

The form of (2.41) will be simplified by performing a Bogoliubov transformation. We first

introduce a two-component vector a:

a =

(

a1

a†2

)

, (2.42)

from which a new two-component operator a(α) is obtained by performing the (unitary)

Bogoliubov transformation

a(α) = U †(α)a U(α) (2.43)

with

U(α) = ei α G (2.44)

and the infinitesimal generator G given by

G = i
(

a1a2 − a†2a
†
1

)

. (2.45)

The transformation U(α) maps the original operators ai to new ones bi, such that

b ≡ a(α) =

(

cosh α sinhα

sinhα cosh α

)

a . (2.46)

We shall fix the hyperbolic angle α by requiring the transformed operator H(α) ≡
U †(α)H U(α), to be diagonal in terms of the new operators bi. This amounts to the

equation

tanh(2α) =
Ω2 − 1

Ω2 + 1
, (2.47)

to be satisfied. In terms of the new operators, the rotated Hamiltonian H(α) adopts the

form

H(α) = m2 +
µ2

cosh 2α

(

b†1b1 + b†2b2 + 1
)

= m2 +
4Ω

θ

(

b†1b1 + b†2b2 + 1
)

. (2.48)

It is then immediate to obtain the free energy in the general case from the one corre-

sponding to the self-dual case by making the substitution 4
θ
→ 4Ω

θ
in (2.40),

F0 = β−1
∞
∑

l=1

l ln

(

1 − e
−β

q

m2+ 4Ω
θ

l

)

. (2.49)
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It is instructive to consider the small Ω limit of the expression above, since we expect

it to be related to the corresponding free energy in the absence of the harmonic Ω2-term.

Besides, since this term plays the role of a confining potential, it naturally defines an

effective physical volume V of order θ/(4Ω). To simplify matters, we assume m = 0. For

Ω ≪ 1, we approximate the sum in (2.49) by an integral, by making an elementary change

of variables, one obtains,

F0 ≃ T 3 V
θT 2

4Ω

∫ ∞

0
dy y ln

(

1 − e−
√

y
)

. (2.50)

The free energy density f0 is therefore

f0 ≃ T 3 θT 2

4Ω

∫ ∞

0
dy y ln

(

1 − e−
√

y
)

. (2.51)

This should be compared with the free energy density for a free commutative scalar field

in a box (which coincides with the result for a free noncommutative theory in an infinite

volume with no harmonic term)

[

f0

]

comm
= T 3 1

2π

∫ ∞

0
dy y ln

(

1 − e−y
)

. (2.52)

An important qualitative difference between the results (2.51) and (2.52) can be noted

due to the appearance of a (dimensionless) factor πθT 2

2Ω .

The Ω → 0 limit depends then on whether one takes it before or after evaluating the

free energy. Indeed, a free NCQFT without the GW term (Ω = 0) yields (2.52), which

coincides with the result for a free commutative QFT. On the other hand, we see that

taking the Ω → 0 limit after the evaluation of the free energy yields instead a divergent

result and does not match the Ω = 0 result. This behavior is reminiscent to the well known

subtlety when taking the commutative θ → 0 limit of non-commutative theories [13].

We conclude this subsection by noting that the transformation that diagonalices H is

of the type considered when dealing with ‘two-mode squeezed states’, in a quite different

context [21]. We can however, take advantage of the equivalent form of the transformation

in order to extract conclusions for the case at hand.

As an example, the ground state of the model for arbitrary Ω may be obtained as

follows: since the transformed operator H(α) in (2.48) is diagonal in the bi basis, we

may read off its ‘ground state’ |0(α)〉 as the one annihilated by the bi operators. Taking

advantage of the relation (2.46) it is therefore possible to write an explicit relation between

the ground state for arbitrary Ω, |0〉Ω ≡ |0(α)〉, and the ground state |0〉Ω=1 ≡ |0〉 of the

self-dual Hamiltonian (2.38). The relation between them can be shown to be given by [21],

|0(α)〉 =
1

cosh α
e− tanh α a

†
1a

†
2 |0〉 . (2.53)

Or, in terms of the model parameters,

|0〉Ω =
2
√

Ω

1 + Ω
e−| 1−Ω

1+Ω
| a†

1a
†
2 |0〉Ω=1 . (2.54)

This is an example of a two-mode squeezed state (see [21]).
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2.4 First-order term

We proceed now to evaluate the first-order contribution to the free energy, F (1)
I . The

expression for (2.10) in terms of the (Matsubara) Fourier components for the field φ is

F (1)
I =

2πλθ

4!β2

+∞
∑

n1,...,n4=−∞

+∞
∑

i1,...,i4=0

δP

i ni=0

〈

φ(i1,i2)
n1

φ(i2,i3)
n2

φ(i3,i4)
n3

φ(i4,i1)
n4

〉

. (2.55)

Moreover, since the averages above are defined by a quadratic weight, an application of

Wick’s theorem yields,
〈

φ(i1,i2)
n1

φ(i2,i3)
n2

φ(i3,i4)
n3

φ(i4,i1)
n4

〉

=
〈

φ(i1,i2)
n1

φ(i2,i3)
n2

〉 〈

φ(i3,i4)
n3

φ(i4,i1)
n4

〉

+
〈

φ(i1,i2)
n1

φ(i3,i4)
n3

〉 〈

φ(i2,i3)
n2

φ(i4,i1)
n4

〉

+
〈

φ(i1,i2)
n1

φ(i4,i1)
n4

〉 〈

φ(i2,i3)
n2

φ(i3,i4)
n3

〉

. (2.56)

Since the quadratic action S0 only mixes Fourier components such that their Matsubara

indices add up to zero, we have,

F (1)
I =

2πλθ

4!β2

∑

n1,n2

∑

i1,...,i4

(〈

φ
(i1,i2)
−n1

φ(i2,i3)
n1

〉 〈

φ
(i3,i4)
−n2

φ(i4,i1)
n2

〉

(2.57)

+
〈

φ
(i1,i2)
−n1

φ(i3,i4)
n1

〉 〈

φ
(i2,i3)
−n2

φ(i4,i1)
n2

〉

+
〈

φ
(i1,i2)
−n1

φ(i4,i1)
n1

〉 〈

φ
(i2,i3)
−n2

φ(i3,i4)
n2

〉 )

.

Relabeling indices and combining identical terms we end up with,

F (1)
I =

2πλθ

4!β2

∑

n1,n2

∑

i1,...,i4

(

2
〈

φ
(i1,i2)
−n1

φ(i2,i3)
n1

〉 〈

φ
(i3,i4)
−n2

φ(i4,i1)
n2

〉

+
〈

φ
(i1,i2)
−n1

φ(i3,i4)
n1

〉 〈

φ
(i2,i3)
−n2

φ(i4,i1)
n2

〉 )

. (2.58)

The first term can be interpreted as a planar graph in standard double line notation

(see [13]), while the second one can be seen to be non-planar. In the expressions above,

the two point free correlation function is determined from the quadratic action (2.13), and

its form strongly depends on the value of Ω.

As we did for the zero-order term, we perform in the following section the explicit

calculation for the self-dual point. We shall then comment on the general case computation.

2.4.1 Self-dual case

As discussed in section 2.3.1 the Ω = 1 case is particularly simple since the quadratic part

of the action is diagonal. We now proceed to compute the first-order term (2.58) taking

into account that the two point correlation function adopts, for the self-dual case, the quite

simple form,
〈

φ
(i1,i2)
−n φ(j1,j2)

n

〉

=
〈

φ̄(i2,i1)
n φ(j1,j2)

n

〉

=
1

2πθ

(

m2 + ω2
n +

4

θ
(i1 + i2 + 1)

)−1

δi1j2 δi2j1 . (2.59)
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We separate the planar and non-planar contributions as,

F (1)
I = P + Q (2.60)

where

P =
λ

4!β2πθ

∑

n1,n2

∑

i1,i2,i

[(

m2 + ω2
n1

+
4

θ
(i1 + i + 1)

)−1

×
(

m2 + ω2
n2

+
4

θ
(i2 + i + 1)

)−1]

, (2.61)

and

Q =
λ

4! 2πθ β2

∑

n1,n2

∑

i

[(

m2 + ω2
n1

+
4

θ
(2i + 1)

)−1

×
(

m2 + ω2
n2

+
4

θ
(2i + 1)

)−1]

. (2.62)

The i’s indices structure in the last two equations manifest the expected worse UV behavior

for the planar contribution (2.61) as compared to the non-planar one (2.62).4

It is useful for what follows to simplify the expressions (2.61)–(2.62). We first note

that the planar contribution may be written as,

P =
λ

4!πθ

∞
∑

i=0

[

S(i)
]2

, (2.63)

where

S(i) =
1

β

∞
∑

n=−∞

∞
∑

j=0

(

m2 + ω2
n +

4

θ
(i + j + 1)

)−1

. (2.64)

For the non-planar term, we have instead,

Q =
λ

4!2πθ

∞
∑

i=0

[

T (i)
]2

, (2.65)

where

T (i) =
1

β

∞
∑

n=−∞

(

m2 + ω2
n +

4

θ
(2i + 1)

)−1

. (2.66)

It is evident that there are UV divergences lurking in the expressions (2.63)–(2.65),

and we now deal with them. We will show below that to first order in λ, as it happens in

the commutative case at finite temperature (see [18]), only a mass counterterm is required

to give meaning to the free energy.

Let us begin computing the two point function counterterm to first order in λ, since

it should be taken into account in the calculation of the free energy we performed above.

4The number of sums in i for any diagram can be seen to be equal, when drawing it in double line

notation, to the number of independent loops.
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It is straightforward to see that the divergent contribution to the quadratic part of the

effective action comes from a planar tadpole diagram and takes the form,

Γ2[φ]

∣

∣

∣

∣

div

=
λ

3!(2πθ)
S0(is)

∫ β

0
dτ

∫

d2xφ ⋆ φ , (2.67)

where S0(i) can be identified as the zero temperature part of S(i), namely,

S0(i) =

∫

dω

2π

∞
∑

k=0

1

ω2 + m2 + 4
θ
(k + i + 1)

, (2.68)

easily seen to be UV divergent for any arbitrary integer i (interpreted in (2.67) as the

substraction point). Performing the integral over ω, one can write this last expression as,

S0(i) =

√
θ

4
ζ

(

1

2
,
m2θ

4
+ i + 1

)

, (2.69)

where now, ζ(s, a) should be understood as the analytical continuation in s of the gener-

alized Riemann (Hurwitz) ζ function. The analytical regularization renders a finite result

for (2.69), the (infinite) ambiguity constant of which is fixed by a renormalization condition

for the mass parameter.

We therefore fix the mass counterterm to have the form,5

δm2 = − λ

3!πθ
S0(0) . (2.70)

This counterterm cancels the relevant divergences in P when the regularization is removed.

Separating S(i) into its zero temperature part S0 plus its thermal contribution ST (which

vanishes at T = 0), we get,

P =
λ

4!πθ

∞
∑

i=0

ST (i)ST (i)

+
2λ

4!πθ

∞
∑

i=0

S0(i)ST (i) +
λ

4!πθ

∞
∑

i=0

S0(i)S0(i) . (2.71)

The last term will be ignored from now on, since we are not interested in temperature-

independent terms (which amount to vacuum energy contributions). The divergence in the

second term is, on the other hand, exactly canceled by the chosen mass counterterm (2.70).

Thus, the renormalized P becomes,

Pren =
λ

4!πθ

∞
∑

i=0

ST (i)ST (i) +
2λ

4!πθ

∞
∑

i=0

S̃0(i)ST (i) (2.72)

where S̃0(i) ≡ S0(i) − S0(0).

5We fix the substraction point is in (2.67) to be zero.
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On the other hand, the divergent part of Q gets canceled by just subtracting the

temperature independent (vacuum-energy) contribution. Indeed, splitting T as we did for

S, we have,

Qren =
λ

4!2πθ

∞
∑

i=0

TT (i)TT (i) +
2λ

4!2πθ

∞
∑

i=0

T0(i)TT (i) , (2.73)

where (contrary to what happened in the calculation of Pren) there is no contribution

to Q from the counterterm (2.70), since its insertion yields, to this order, only planar

contributions.

Explicitly the function S̃0(i) takes the form,

S̃0(i) =

√
θ

4

[

ζ

(

1

2
,
m2θ

4
+ i + 1

)

− ζ

(

1

2
,
m2θ

4
+ 1

)]

= −
√

θ

4

i
∑

k=1

1
√

k + m2θ
4

. (2.74)

The temperature dependent piece, ST (i) is, on the other hand, given by

ST (i) =

√
θ

2

∞
∑

j=0

1
√

m2θ
4 + j + i + 1

1

e
2β√

θ

q

m2θ
4

+j+i+1 − 1

=

√
θ

2

∞
∑

j=i

1
√

m2θ
4 + j + 1

1

e
2β√

θ

q

m2θ
4

+j+1 − 1

. (2.75)

For T (i) we obtain,

T0(i) =

√
θ

4

1
√

m2θ
4 + 2i + 1

(2.76)

and

TT (i) =

√
θ

2

1
√

m2θ
4 + 2i + 1

1

e
2β√

θ

q

m2θ
4

+2i+1 − 1

. (2.77)

Inserting the previous expressions into Pren and Qren yields the first order contribution

in λ to the free energy as a combination of multiple series, which cannot, in general, be

summed in closed form. However, for the massless case it is easy to see that the first order

correction will have the form

F (1)
I = λ f

(√
θT

)

. (2.78)

This is, λ times a function of the dimensionless combination involving the noncommuta-

tivity parameter θ and the temperature T . In the limit
√

θT ≫ 1, one can also see that

the leading behavior of the free energy is of the form f(x) ∼ x2, thus,

F (1)
I ∼ λ θ T 2 . (2.79)

This leading contribution comes only from the planar diagrams P , as the non-planar ones

Q vanish in this limit.
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It is worth noting that, in the massless limit, the corresponding contribution for the

commutative analogue of this model has a similar form,

[

F (1)
I

]

comm
= κλL2 T 2 , (2.80)

where L2 is the ‘volume’ (i.e., area) of the system, and κ is a numerical constant. The

noncommutativity parameter θ appears again as playing the role of the area of the system,

at least when that parameter is big in comparison with the temperature. This is our second

argument for interpreting θ
4Ω (here Ω = 1) as the ‘volumen’ of the system.

2.4.2 General case

For general Ω the complicated form of the propagator renders the calculation of first order

computations quite involved. However, when considering the free energy in the large θ

(‘thermodynamic’) limit, an important simplification arises. Indeed, in this limit only

the planar diagrams contribute: the reason (as it happened for the self-dual case) is that

non-planar graphs, having less independent summations, have a softer scaling behavior in

the thermodynamic limit, and therefore get suppressed. Since only planar diagrams are

relevant, one can then take advantage of the Bogoliubov transformation of the free case,

which allows one to map the non self-dual case to the dual one, by a simple rescaling of θ

in the propagators. For the planar contribution (and only for them) the unitary operators

cancel out. Thus, in the thermodynamic limit, the result for the free energy correction

F (1)
I only differ from a 1

Ω factor in comparison with the self-dual contribution (as it was

the case for the ideal gas term).

2.5 Summation of the planar ring diagrams for the self-dual case

We conclude this section by considering the summation of the planar ring diagrams (non

planar are discarded, since we have in mind the large-volume limit). We do this in order

to exhibit some of the peculiarities of the present model.

The second order term in the (renormalized) effective action is given by,

[

Γ2(φ)
]

ren
=

λ

2 × 3!

∫ β

0
dτ

∞
∑

i,j=0

φ(j,i)(τ)
[

S̃0(i) + ST (i)

+S̃0(j) + ST (j)
]

φ(i,j)(τ) , (2.81)

where we have kept the same notations as in the previous subsection.

We note that, being this contribution diagonal in the matrix base, the contribution

corresponding to the summation of the ring diagrams can be written straightforwardly.

Indeed, it corresponds to the calculation of the Gaussian functional integral that results

from the inclusion of the quadratic term in the effective action, and subtracting the (already

written) lower-order terms, to avoid double counting. The expression can be put in the
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following way,

Fring =
1

2β

∞
∑

n=−∞

∞
∑

i,j=0

ln

{

ω2
n + m2 +

4

θ
(i + j + 1)

+
λ

3!2πθ

[

S̃0(i) + ST (i) + S̃0(j) + ST (j)
]

}

−F0 − P . (2.82)

Note that, for n = 0 and m = 0, the would-be IR divergent contributions are not only

cured by the first order correction self-energy term, but also by the θ−1 factor always

present whenever there is a finite volume, whose origin is the zero point energy of the two

dimensional oscillators. The summation over the Matsubara frequencies can be performed

leading to,

Fring = β−1
∞

∑

i,j=0

e−β
√

m2 + Ei,j − F0 − P . (2.83)

where

Ei,j =
4

θ
(i + j + 1) +

λ

3!2πθ

[

S̃0(i) + ST (i) + S̃0(j) + ST (j)
]

. (2.84)

We conclude by mentioning an important outcome of this expression: since each element

in the sum is no longer a function of i+ j, the degeneracy we had for the free case is lifted.

This may be thought of as due to the fact that, when including the φ4
⋆ interaction, the

dynamical SU(2) symmetry of the free theory cannot be preserved.

3. Conclusions

We have considered the perturbative calculation of the free energy for a noncommutative

real scalar field theory in 2 + 1 dimensions in the presence of a Grosse-Wulkenhaar term.

We have first shown, at the free (‘ideal gas’) level, that the free energy for the GW-model

has a qualitatively different temperature behavior when compared to the known result

obtained by assuming the noncommutative theory to be defined on an infinite volume

from the very beginning. The qualitative difference being due to the appearance of the

dimensionless parameter θT 2

4Ω in (2.51). Moreover, for the known infinite volume (Ω = 0)

case, the free energy turns out to be θ-independent since the θ-dependence can solely arise

from boundary terms which vanish for our choice of boundary conditions.

Of course, one might have also considered the Ω = 0 case in a finite-volume situation.

That procedure should also produce, we believe, a non trivial large-volume limit, due to

the interplay between the noncommutativity and boundary conditions.

Regarding the perturbative corrections, in spite of the difficulties to obtain analytical

results, some general properties clearly emerge. Firstly, the perturbative computations

and the harmonic potential form of the GW-term suggest to interpret the volume of the

system to be given by V ∼ θ/4Ω. Secondly, in the thermodynamic θ → ∞ limit, only

planar graphs yield a non-vanishing contribution. Moreover, for the arbitrary Ω case, one

can see that, again in the thermodynamic limit, the contribution of the planar graphs, can
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be obtained from the calculation of the ones for the self-dual case, by a redefinition of the

propagator, which essentially amounts to a rescaling of θ.

Finally, we have constructed a series that represent the sum of the planar ring diagrams,

showing how the GW-term moderates its IR behavior. As an outcome, the calculation

shows that the dynamical SU(2) symmetry present in the free theory is not preserved

when interactions are turned on.

The renormalization process that gives meaning to the perturbative computations goes

in complete analogy with the commutative case. We have shown that, as in the commuta-

tive case, at the first perturbative order no new divergences appear at finite temperature,

and the expressions get regularized, if the divergences at zero temperature where already

tamed. We should mention nevertheless, that contrary to the standard Ω = 0 case, the

planar tadpole contributions to the self energy depend on the external momentum.

Acknowledgments

G.A.S. would like to thank Glenn Barnich and Andy Gomberoff for email correspondence.

C.D.F. thanks CONICET and ANPCyT for financial support and G.A.S. acknowledges

support from CONICET, PIP 6160.

A. Useful formulae and Feynman diagrams conventions

Conventions

Noncommutativity affects the two spatial coordinates xi (i, j = 1, 2),

[x0, xi] = 0, [xi, xj ] = iθǫij ,

and is realized in terms of the star product (1.1).

The Moyal-Weyl correspondence [2, 22] maps integration on NC space to traces on

Fock space as
∫

d2x f(x) = 2πθ Tr[Of ] (A.1)

The association between functions f(x) in NC space and Weyl ordered operators Of is via

Of (x̂) =

∫

d2x f(x) ∆̂(x) (A.2)

where

∆̂(x) =

∫

d2k

(2π)2
eik·(x̂−x) (A.3)

One can see that derivatives on NC space can be implemented as

∂if =
i

θ
ǫij[xj , f ]. (A.4)

The matrix base functions b(i,j)(x) appearing in the text are the Weyl ordered representa-

tion in NC space of the Fock space operators |i〉〈j|. One therefore has [b(i,j)(x)]† = b(j,i)(x).
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On finite temperature energy sums

To separate the temperature dependence from the zero temperature contribution in ex-

pressions (2.64) and (2.66) we used the identity

∞
∑

n=−∞

1

n2 + a2
=

2π

a

[

1

2
+

1

e2πa − 1

]

(A.5)

Diagrammatics

To keep track of the matrix indices of the field in (2.22) a double line notation is useful.

The free theory two point propagator (2.59) can be drawn as

i1 j2−n
i2 j1

n

The fourth order vertex (2.14) in matrix base (2.55) is represented as

k2

k2

n1

k3

n2

k3k4

n3

k4
n4k1 k1

The first order corrections to the free energy (2.60) are

Propagator corrections and self-energy

The two point propagator function is defined as

D(x1, t1|x2, t2) = 〈φ(x1, t1)φ(x2, t2)〉 . (A.6)

Translational invariance in t coordinate implies that D is a function of t1 − t2. The kernel

D̃n in Fourier space is defined by (see (2.17))

D(x1, t1|x2, t2) =
1

β

∞
∑

n=−∞

∞
∑

i,j=0

eiωn(t1−t2)b(i1,j1)(x1) b(i2,j2)(x2) D̃(i1,j1;i2,j2)
n (A.7)

where ωn are the Matsubara frequencies, and takes the form

D̃(i1,j1;i2,j2)
n =

〈

φ
(i1,j1)
−n φ(i2,j2)

n

〉

. (A.8)

The first order corrections to the propagator in a diagrammatic expansion are

i1 j2−n
j1 i2

n =
i1 j2−n
j1 i2

n +
i1
j1

−n
k j2

i2
n +

i1
j1

−n
j2

i2
n

k

+
i1
j1

−n

j2

i2
n
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